3.727 \(\int \frac {a+b \sin (e+f x)}{(c+d \sin (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=195 \[ -\frac {2 (b c-a d) \cos (e+f x)}{f \left (c^2-d^2\right ) \sqrt {c+d \sin (e+f x)}}-\frac {2 (b c-a d) \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \left (c^2-d^2\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}+\frac {2 b \sqrt {\frac {c+d \sin (e+f x)}{c+d}} F\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {c+d \sin (e+f x)}} \]

[Out]

-2*(-a*d+b*c)*cos(f*x+e)/(c^2-d^2)/f/(c+d*sin(f*x+e))^(1/2)+2*(-a*d+b*c)*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/s
in(1/2*e+1/4*Pi+1/2*f*x)*EllipticE(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2)*(d/(c+d))^(1/2))*(c+d*sin(f*x+e))^(1/2)/d
/(c^2-d^2)/f/((c+d*sin(f*x+e))/(c+d))^(1/2)-2*b*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*
EllipticF(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2)*(d/(c+d))^(1/2))*((c+d*sin(f*x+e))/(c+d))^(1/2)/d/f/(c+d*sin(f*x+e
))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 195, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {2754, 2752, 2663, 2661, 2655, 2653} \[ -\frac {2 (b c-a d) \cos (e+f x)}{f \left (c^2-d^2\right ) \sqrt {c+d \sin (e+f x)}}-\frac {2 (b c-a d) \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \left (c^2-d^2\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}+\frac {2 b \sqrt {\frac {c+d \sin (e+f x)}{c+d}} F\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {c+d \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sin[e + f*x])/(c + d*Sin[e + f*x])^(3/2),x]

[Out]

(-2*(b*c - a*d)*Cos[e + f*x])/((c^2 - d^2)*f*Sqrt[c + d*Sin[e + f*x]]) - (2*(b*c - a*d)*EllipticE[(e - Pi/2 +
f*x)/2, (2*d)/(c + d)]*Sqrt[c + d*Sin[e + f*x]])/(d*(c^2 - d^2)*f*Sqrt[(c + d*Sin[e + f*x])/(c + d)]) + (2*b*E
llipticF[(e - Pi/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)])/(d*f*Sqrt[c + d*Sin[e + f*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2754

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[((
b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(a^2 - b^2
)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + 2)*Sin[e + f*x], x], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \frac {a+b \sin (e+f x)}{(c+d \sin (e+f x))^{3/2}} \, dx &=-\frac {2 (b c-a d) \cos (e+f x)}{\left (c^2-d^2\right ) f \sqrt {c+d \sin (e+f x)}}-\frac {2 \int \frac {\frac {1}{2} (-a c+b d)+\frac {1}{2} (b c-a d) \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}} \, dx}{c^2-d^2}\\ &=-\frac {2 (b c-a d) \cos (e+f x)}{\left (c^2-d^2\right ) f \sqrt {c+d \sin (e+f x)}}+\frac {b \int \frac {1}{\sqrt {c+d \sin (e+f x)}} \, dx}{d}-\frac {(b c-a d) \int \sqrt {c+d \sin (e+f x)} \, dx}{d \left (c^2-d^2\right )}\\ &=-\frac {2 (b c-a d) \cos (e+f x)}{\left (c^2-d^2\right ) f \sqrt {c+d \sin (e+f x)}}-\frac {\left ((b c-a d) \sqrt {c+d \sin (e+f x)}\right ) \int \sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}} \, dx}{d \left (c^2-d^2\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}+\frac {\left (b \sqrt {\frac {c+d \sin (e+f x)}{c+d}}\right ) \int \frac {1}{\sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}} \, dx}{d \sqrt {c+d \sin (e+f x)}}\\ &=-\frac {2 (b c-a d) \cos (e+f x)}{\left (c^2-d^2\right ) f \sqrt {c+d \sin (e+f x)}}-\frac {2 (b c-a d) E\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 d}{c+d}\right ) \sqrt {c+d \sin (e+f x)}}{d \left (c^2-d^2\right ) f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}+\frac {2 b F\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}{d f \sqrt {c+d \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.56, size = 159, normalized size = 0.82 \[ \frac {2 \left (d (a d-b c) \cos (e+f x)+(c+d) (b c-a d) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} E\left (\frac {1}{4} (-2 e-2 f x+\pi )|\frac {2 d}{c+d}\right )-b \left (c^2-d^2\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} F\left (\frac {1}{4} (-2 e-2 f x+\pi )|\frac {2 d}{c+d}\right )\right )}{d f (c-d) (c+d) \sqrt {c+d \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sin[e + f*x])/(c + d*Sin[e + f*x])^(3/2),x]

[Out]

(2*(d*(-(b*c) + a*d)*Cos[e + f*x] + (c + d)*(b*c - a*d)*EllipticE[(-2*e + Pi - 2*f*x)/4, (2*d)/(c + d)]*Sqrt[(
c + d*Sin[e + f*x])/(c + d)] - b*(c^2 - d^2)*EllipticF[(-2*e + Pi - 2*f*x)/4, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e
 + f*x])/(c + d)]))/((c - d)*d*(c + d)*f*Sqrt[c + d*Sin[e + f*x]])

________________________________________________________________________________________

fricas [F]  time = 0.46, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (b \sin \left (f x + e\right ) + a\right )} \sqrt {d \sin \left (f x + e\right ) + c}}{d^{2} \cos \left (f x + e\right )^{2} - 2 \, c d \sin \left (f x + e\right ) - c^{2} - d^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e))/(c+d*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral(-(b*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)/(d^2*cos(f*x + e)^2 - 2*c*d*sin(f*x + e) - c^2 - d^2),
 x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {b \sin \left (f x + e\right ) + a}{{\left (d \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e))/(c+d*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((b*sin(f*x + e) + a)/(d*sin(f*x + e) + c)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 3.27, size = 567, normalized size = 2.91 \[ \frac {\sqrt {-\left (-d \sin \left (f x +e \right )-c \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \left (\frac {2 b \left (\frac {c}{d}-1\right ) \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {\frac {d \left (1-\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {\frac {\left (-\sin \left (f x +e \right )-1\right ) d}{c -d}}\, \EllipticF \left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right )}{d \sqrt {-\left (-d \sin \left (f x +e \right )-c \right ) \left (\cos ^{2}\left (f x +e \right )\right )}}+\frac {\left (d a -c b \right ) \left (\frac {2 d \left (\cos ^{2}\left (f x +e \right )\right )}{\left (c^{2}-d^{2}\right ) \sqrt {-\left (-d \sin \left (f x +e \right )-c \right ) \left (\cos ^{2}\left (f x +e \right )\right )}}+\frac {2 c \left (\frac {c}{d}-1\right ) \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {\frac {d \left (1-\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {\frac {\left (-\sin \left (f x +e \right )-1\right ) d}{c -d}}\, \EllipticF \left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right )}{\left (c^{2}-d^{2}\right ) \sqrt {-\left (-d \sin \left (f x +e \right )-c \right ) \left (\cos ^{2}\left (f x +e \right )\right )}}+\frac {2 d \left (\frac {c}{d}-1\right ) \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {\frac {d \left (1-\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {\frac {\left (-\sin \left (f x +e \right )-1\right ) d}{c -d}}\, \left (\left (-\frac {c}{d}-1\right ) \EllipticE \left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right )+\EllipticF \left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right )\right )}{\left (c^{2}-d^{2}\right ) \sqrt {-\left (-d \sin \left (f x +e \right )-c \right ) \left (\cos ^{2}\left (f x +e \right )\right )}}\right )}{d}\right )}{\cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sin(f*x+e))/(c+d*sin(f*x+e))^(3/2),x)

[Out]

(-(-d*sin(f*x+e)-c)*cos(f*x+e)^2)^(1/2)*(2*b/d*(c/d-1)*((c+d*sin(f*x+e))/(c-d))^(1/2)*(d*(1-sin(f*x+e))/(c+d))
^(1/2)*((-sin(f*x+e)-1)*d/(c-d))^(1/2)/(-(-d*sin(f*x+e)-c)*cos(f*x+e)^2)^(1/2)*EllipticF(((c+d*sin(f*x+e))/(c-
d))^(1/2),((c-d)/(c+d))^(1/2))+(a*d-b*c)/d*(2*d*cos(f*x+e)^2/(c^2-d^2)/(-(-d*sin(f*x+e)-c)*cos(f*x+e)^2)^(1/2)
+2*c/(c^2-d^2)*(c/d-1)*((c+d*sin(f*x+e))/(c-d))^(1/2)*(d*(1-sin(f*x+e))/(c+d))^(1/2)*((-sin(f*x+e)-1)*d/(c-d))
^(1/2)/(-(-d*sin(f*x+e)-c)*cos(f*x+e)^2)^(1/2)*EllipticF(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))+2
/(c^2-d^2)*d*(c/d-1)*((c+d*sin(f*x+e))/(c-d))^(1/2)*(d*(1-sin(f*x+e))/(c+d))^(1/2)*((-sin(f*x+e)-1)*d/(c-d))^(
1/2)/(-(-d*sin(f*x+e)-c)*cos(f*x+e)^2)^(1/2)*((-c/d-1)*EllipticE(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^
(1/2))+EllipticF(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2)))))/cos(f*x+e)/(c+d*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {b \sin \left (f x + e\right ) + a}{{\left (d \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e))/(c+d*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*sin(f*x + e) + a)/(d*sin(f*x + e) + c)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {a+b\,\sin \left (e+f\,x\right )}{{\left (c+d\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*sin(e + f*x))/(c + d*sin(e + f*x))^(3/2),x)

[Out]

int((a + b*sin(e + f*x))/(c + d*sin(e + f*x))^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e))/(c+d*sin(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________